More reviews of the programme starring @MarcusduSautoy & @daraobriain.
Sorry I'm getting behind with putting these reviews up. End result - this will be a long post and a long read...
The second programme was on the theme of location, location, maths.
The first task was to route three services (Gas, water & electricity) to three houses without the lines crossing over. After a lot of activity this was declared to be impossible (all participants got 8 out of 9 connections) and this was confirmed by Marcus who pointed out real-life applications e.g. in railways & bridge construction.
The second task involved laying paths between four barns for some pampered cows with a goal of using the least slabs (i.e. shortest distance) and the solution was a path like my sketch (on the left).
Marcus used a technique covered in his Code programme i.e. using soap bubbles to find the optimal layout.
The third task was finding the best meeting place. Clothes from a luckless (mannequin) student were taken to various points on a map by other students. The challenge was to find the best grid location for a rendevous of all parties to re-uinte him with his clothes. Both the comedian & the maths department students got the right answer using x & y co-ordinates (cartesian) to find the best spot using streets rather than diagonal routes.
The audience challenge at the end was the Monty Hall problem which is solvable using Bayesian reasoning and demonstrates how sometimes solutions can be counter-intuitive.
The second programme was on the theme of location, location, maths.
The first task was to route three services (Gas, water & electricity) to three houses without the lines crossing over. After a lot of activity this was declared to be impossible (all participants got 8 out of 9 connections) and this was confirmed by Marcus who pointed out real-life applications e.g. in railways & bridge construction.
The second task involved laying paths between four barns for some pampered cows with a goal of using the least slabs (i.e. shortest distance) and the solution was a path like my sketch (on the left).
Marcus used a technique covered in his Code programme i.e. using soap bubbles to find the optimal layout.
The third task was finding the best meeting place. Clothes from a luckless (mannequin) student were taken to various points on a map by other students. The challenge was to find the best grid location for a rendevous of all parties to re-uinte him with his clothes. Both the comedian & the maths department students got the right answer using x & y co-ordinates (cartesian) to find the best spot using streets rather than diagonal routes.
The audience challenge at the end was the Monty Hall problem which is solvable using Bayesian reasoning and demonstrates how sometimes solutions can be counter-intuitive.
The third programme I saw had Andi Osho (@andiosho) as the comedic guest. She confessed to being fond of Sudoku - which I'm sure helped her do so well in this weeks programme which focused in on the use of logic in Mathematics.
1st task involved incorrectly labelled boxes of wine. 3 boxes - one full of bottles of red, one full of bottles of white and one with a mixture. Know that all the labels are incorrect. You can sample only one bottle from one box and then use logic to work out correct labeling. Andi got it right almost instantly!
2nd task involved the fake coin task that I've blogged about in previous School of Hard Sums reviews (9 coins, one of which is a lighter fake and a pan balance with only two weighings allowed - find the fake). Nice link to Isaac Newton solving coin-clipping by putting the rim on coins whilst in charge of royal Mint (And also how the Mint mucked up his commemorative coin by featuring an EVEN number of cogs on the graphic - It would not turn in real life(try it...))
3rd task had a problem a bit like theclassic one featuring farmer trying to get a fox, a hen and some corn across the river. Three vampires and three virgins trying to get to a penthouse night-club with a lift that only takes 2 and requires one person to operate it. If at any time the vamps outnumber the virgins then blood-letting ensues. The logic requires shuffling them around until all the virgins are at the top and all the vamps at the bottom and then finally bringing the latter up.
All in all, with the aim of doing a maths outreach activity, another good episode I felt.
No comments:
Post a Comment